The number of rational points of hyperelliptic curves over subsets of finite fields

نویسندگان

  • Kristina Nelson
  • József Solymosi
  • Foster Tom
  • Ching Wong
چکیده

Abstract. We prove two related concentration inequalities concerning the number of rational points of hyperelliptic curves over subsets of a finite field. In particular, we investigate the probability of a large discrepancy between the numbers of quadratic residues and non-residues in the image of such subsets over uniformly random hyperelliptic curves of given degrees. We find a constant probability of such a high difference and show the existence of sets with an exceptionally large discrepancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 The Number of Rational Points On Genus 4 Hyperelliptic Supersingular Curves

One of the big questions in the area of curves over finite fields concerns the distribution of the numbers of points: Which numbers occur as the number of points on a curve of genus g? The same question can be asked of various subclasses of curves. In this article we classify the possibilities for the number of points on genus 4 hyperelliptic supersingular curves over finite fields of order 2, ...

متن کامل

Non-hyperelliptic curves of genus three over finite fields of characteristic two

Let k be a finite field of even characteristic. We obtain in this paper a complete classification, up to k-isomorphism, of non singular quartic plane curves defined over k. We find explicit rational normal models and we give closed formulas for the total number of k-isomorphism classes. We deduce from these computations the number of k-rational points of the different strata by the Newton polyg...

متن کامل

Counting Points for Hyperelliptic Curves of Type y2= x5 + ax over Finite Prime Fields

Counting rational points on Jacobian varieties of hyperelliptic curves over finite fields is very important for constructing hyperelliptic curve cryptosystems (HCC), but known algorithms for general curves over given large prime fields need very long running times. In this article, we propose an extremely fast point counting algorithm for hyperelliptic curves of type y = x + ax over given large...

متن کامل

Pointless hyperelliptic curves

In this paper we consider the question of whether there exists a hyperelliptic curve of genus g which is defined over but has no rational points over for various pairs . As an example of such a result, we show that if p is a prime such that is also prime then there will be pointless hyperelliptic curves over of every genus.

متن کامل

Rational Points on Hyperelliptic Curves: Recent Developments

We give an overview over recent results concerning rational points on hyperelliptic curves. One result says that ‘most’ hyperelliptic curves of high genus have very few rational points. Another result gives a bound on the number of rational points in terms of the genus and the Mordell-Weil rank, provided the latter is sufficiently small. The first result relies on work by Bhargava and Gross on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.02781  شماره 

صفحات  -

تاریخ انتشار 2017